In my last blog in this series, we looked at the present state of 5G. Although it’s still early and it’s impossible to fully comprehend the potential impact of 5G use cases that haven’t been built yet, opportunities to monetize 5G with little additional investment are out there for network service providers (NSPs) who know where to look.
Now, it’s time to look toward the future. Anyone who’s been paying attention knows that 5G technology will be revolutionary across many industry use cases, but I’m not sure everyone understands just how revolutionary, and how quickly it will go down. According to Gartner®, “While 10% of CSPs in 2020 provided commercializable 5G services, which could achieve multiregional availability, this number will increase to 60% by 2024”.[i]
With so many recognizing the value of 5G and acting to capitalize on it, NSPs that fail to prepare for future 5G opportunities today are doing themselves and their enterprise customers a serious disservice. Preparing for a 5G future may seem daunting but working with a trusted interconnection partner like Equinix can help make it easier.
5G is changing the game – right now. Is your infrastructure ready?
Quickly enhance your existing infrastructure to lay the groundwork for full 5G functionality. Advanced 5G use cases require a fundamental change in infrastructure.
Download5G is so challenging for NSPs and their customers because it is so revolutionary. Mobile radio networks were built with consumer use cases in mind, which means the traffic from those networks is generally dumped straight to the internet. 5G is the first generation of wireless technology capable of supporting enterprise-class business applications, which means it’s also forcing many NSPs to consider alternatives to the public internet to support those applications.
User plane function breakout helps put traffic near the app
In my last article, I mentioned that one of the key steps mobile network operators (MNOs) could take to enable 5G monetization in the short term would be to bypass the public internet by enabling user traffic functions in the data center. This is certainly a step in the right direction, but to prepare themselves for future 5G and multicloud opportunities, they must go further by enabling user plane function (UPF) breakout.
The 5G opportunities of tomorrow will rely on wireless traffic residing as close as possible to business applications, to reduce the distance data must travel and keep latency as low as possible. This is a similar challenge to the one NSPs faced in the past with their wireline networks. To address that challenge, they typically deployed virtual network functions (VNFs) on their own equipment. This helped them get the network capabilities they needed, when and where they needed them, but it also required them to buy colocation capacity and figure out how to interconnect their VNFs with the rest of their digital infrastructure.
Instead, Equinix customers have the option to do UPF breakout with Equinix Metal®, our automated bare-metal-as-a-service offering, or Network Edge virtual network services on Platform Equinix®. Both options provide a simple, cost-effective way to get the edge infrastructure needed to support 5G business applications. Since both offerings are integrated with Equinix Fabric™, they allow NSPs to create secure software-defined interconnection with a rich ecosystem of partners. This streamlines the process of setting up hybrid deployments.
Working with Equinix can help make UPF breakout less daunting. Instead of investing massive amounts of money to create 5G-ready infrastructure everywhere they need it, they can take advantage of more than 235 Equinix International Business Exchange™ (IBX®) data centers spread across 65 metros in 27 countries on five continents. This allows them to shift from a potentially debilitating up-front CAPEX investment to an OPEX investment spread over time, making the economics around 5G infrastructure much more manageable.
Support MEC with a wide array of partners
Multiaccess edge compute (MEC) will play a key role in enabling advanced 5G use cases, but first enterprises need a digital infrastructure capable of supporting it. This gets more complicated when they need to modernize their infrastructure while maintaining existing application-level partnerships. To put it simply, NSPs and their enterprise customers need an infrastructure provider that can not only partner with them, but also partner with their partners.
With Equinix Metal, organizations can deploy the physical infrastructure they need to support MEC at software speed, while also supporting capabilities from a diverse array of partners. For instance, Equinix Metal provides support for Google Anthos, Amazon Elastic Container Service (ECS) Anywhere and Amazon Elastic Kubernetes Service (EKS) Anywhere. These are just a few examples of how Equinix interconnection offerings make it easier to collaborate with leading cloud providers to deploy MEC-driven applications.
Provision reliable network slicing in a matter of minutes
Network slicing is another important 5G capability that can help NSPs differentiate their offerings and unlock new business opportunities. On the surface, it sounds simple: slicing up network traffic into different classes of service, so that the most important traffic is optimized for factors such as high throughput, low latency and security. However, NSPs won’t always know exactly what slices their customers will want to send or where they’ll want to send them, making network slice mapping a serious challenge.
Equinix Fabric offers a quicker, more cost-effective way to map network slices, with no need for cross connects to be set on the fly. With software-defined interconnection, the counterparty that receives the network slice essentially becomes an automated function that NSPs can easily control. This means NSPs can provision network slicing in a matter of minutes, not days, even when they don’t know who the counterparty is going to be. Service automation enabled by Equinix Fabric can be a critical element of an NSP’s multidomain orchestration architecture.
5G use case: Reimagining the live event experience
As part of the MEF 3.0 Proof of Concept showcase, Equinix partnered with Spectrum Enterprise, Adva, and Juniper Networks to create a proof of concept (PoC) for a differentiated live event experience. The PoC showed how event promoters such as minor league sports teams could ingest multiple video feeds into an AI/ML-driven GPU farm that lives in an Equinix facility, and then process those feeds to present fans with custom content on demand.
With the help of network slicing and high-performance MEC, fans can build their own unique experience of the event, looking at different camera angles or following a particular player throughout the game. Event promoters can offer this personalized experience even without access to the on-site data centers that are more common in major league sports venues.
DISH taps Equinix for digital infrastructure services in support of 5G rollout
As DISH looks to build out the first nationwide 5G network in the U.S., they will partner with Equinix to gain access to critical digital infrastructure services in our IBX data centers. This is a great example of how Equinix is equipped to help its NSP partners access the modern digital infrastructure needed to capitalize on 5G—today and into the future.
DISH is taking the lead in delivering on the promise of 5G in the U.S., and our partnership with Equinix will enable us to secure critical interconnections for a nationwide 5G network. With proximity to large population centers, as well as network and cloud density, Equinix is the right partner to connect our cloud-native 5G network.”- Jeff McSchooler, DISH executive vice president of wireless network operations
To learn more about how Equinix can help ease the transition for NSPs looking to modernize their digital infrastructure for 5G, check out the white paper “5G is changing the game – right now. Is your infrastructure ready?”
[i] Gartner, Forecast Analysis: Communications Service Provider Operational Technology, Worldwide. Authors: Michael Porowski, Jouni Forsman, Kosei Takiishi, Peter Liu, Amresh Nandan, Sylvain Fabre. July 19, 2021. ID: G00751154. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.